Valproic acid (VPA) is a small fatty acid used for treatment of different neurologic diseases such as epilepsy, migraines or bipolar disorders. VPA modulates different processes of cell metabolism that can lead to alterations in susceptibility of several cell types to the infection of Human Immunodeficiency Virus (HIV), Epstein-Barr virus (EBV), as well as to exert an inhibitory effect on the replication of different enveloped viruses in cultured cells. Taken these data into account and the fact that HSV-1 has been involved in some neuropathies, we have characterized the effect of VPA on this herpesvirus infection of the differentiation/maturation-inducible human oligodendrocyte cell line HOG, which resulted more susceptible to VPA inhibition of virus growth after cell differentiation. In these cells, the role of VPA in virus entry was tackled. Incubation with VPA induced a slight but reproducible inhibition in the virus particles uptake mainly observed when the drug was added in the adsorption or early upon infection. In addition, transcription and expression of viral proteins were significantly downregulated in the presence of VPA. Remarkably, when the infective viral production was assessed, VPA dramatically blocked the detection of infectious HSV-1 particles. Herein, our results indicate that VPA treatment of HOG cells significantly reduces the effect of HSV-1 infection, virus entry and productivity without affecting cellular viability.
>>Más informaciónHerpes simplex virus type 1 (HSV-1) has the ability to enter many different hosts and cell types by several strategies. This highly prevalent alphaherpesvirus can enter target cells using different receptors and different pathways: fusion at a neutral pH, low-pH-dependent and low-pH-independent endocytosis. Several cell receptors for viral entry have been described, but several observations suggest that more receptors for HSV-1 might exist. In this work, we propose a novel role for the proteolipid protein (PLP) in HSV-1 entry into the human oligodendrocytic cell line HOG. Cells transfected with PLP-EGFP showed an increase in susceptibility to HSV-1. Furthermore, the infection of HOG and HOG-PLP transfected cells with the R120vGF virus–unable to replicate in ICP4-defficient cells- showed an increase in viral signal in HOG-PLP, suggesting a PLP involvement in viral entry. In addition, a mouse monoclonal antibody against PLP drastically inhibited HSV-1 entry into HOG cells. PLP and virions colocalized in confocal immunofluorescence images, and in electron microscopy images, which suggest that PLP acts at the site of entry into HOG cells. Taken together these results suggest that PLP may be involved in HSV-1 entry in human oligodendrocytic cells.
>>Más informaciónIgM detection is considered as the gold standard for mumps diagnosis. Currently, most cases in developed countries occur in highly vaccinated populations due to secondary vaccine failure. In these patients, pre-existing vaccine-induced antibodies are not able to neutralise the virus, but prevent the typical primary response, so that specific IgM is not always elicited. Consequently, acute infection has to be demonstrated by direct detection of the virus by viral isolation or genomic amplification. RT-PCR allows a diagnosis with the maximum sensitivity to be made and also forms the basis for genotype characterisation by sequencing the SH gene, according to WHO recommendations. However, none of the RT-PCR techniques properly evaluated for the diagnosis of acute mumps infection yields an amplification fragment useful for genotyping, and none of the amplification techniques described for genotyping has proved to be sensitive enough for diagnosis.
>>Más información